

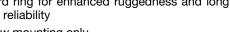
RoHS

COMPLIANT **HALOGEN**

FREE

High Performance Schottky Rectifier, 100 A

PowerTab®


LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS				
I _{F(AV)}	100 A			
V_{R}	30 V			
V _F at I _F	0.56 V			
I _{RM}	460 mA at 125 °C			
T _J max.	150 °C			
E _{AS}	36 mJ			
Package	PowerTab [®]			
Circuit configuration	Single			

FEATURES

- 150 °C max. operating junction temperature
- High frequency operation
- Ultralow forward voltage drop
- · Continuous high current operation
- · Guard ring for enhanced ruggedness and long term reliability

- · Screw mounting only
- Designed and qualified according to JEDEC®-JESD 47
- PowerTab[®] package
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The VS-100BGQ030 Schottky rectifier has been optimized for ultralow forward voltage drop specifically for low voltage output in high current AC/DC power supplies. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MECHANICAL DATA

Case: PowerTab®

Molding compound meets UL 94 V-0 flammability rating

Terminal: nickel plated, screwable

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
1	Rectangular waveform	100	Α		
lF(AV)	T _C	106	°C		
V _{RRM}		30	V		
I _{FSM}	t _p = 5 µs sine	4500	Α		
VF	100 A _{pk} (typical)	0.49	V		
VF	T _J	150	°C		
TJ	Range	-55 to +150	°C		

VOLTAGE RATINGS					
PARAMETER	SYMBOL	100BGQ030	UNITS		
Maximum DC reverse voltage	V_{R}	30	V		
Maximum working peak reverse voltage	V_{RWM}	30	V		

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current	I _{F(AV)}	50 % duty cycle at T _C = 106 °C, rectangular waveform		100	Α
Maximum peak one cycle		5 μs sine or 3 μs rect. pulse	Following any rated load	4500	
non-repetitive surge current	I _{FSM}	10 ms sine or 6 ms rect. pulse	condition and with rated V _{RRM} applied	850	А
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 8 A, L = 1.12 mH		36	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical 8 A		Α	

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
	V _{FM} ⁽¹⁾	50 A	T _J = 25 °C	0.47	0.5	V
Forward voltage drop		100 A		0.56	0.63	
Forward voltage drop		50 A	T _J = 150 °C	0.36	0.4	
		100 A		0.49	0.56	
Reverse leakage current	I _{RM} ⁽¹⁾	T _J = 125 °C, V _R = 15 V		80	160	
		$T_J = 150 ^{\circ}\text{C}, V_R = 30 ^{\circ}\text{V}$		840	1350	mA
		T _J = 25 °C	V _R = Rated V _R	0.6	2.4	IIIA
		T _J = 125 °C		260	460	
Maximum junction capacitance	C _T	$V_R = 5 V_{DC}$, (test signal range 100 kHz to 1 MHz) 25 °C		38	00	pF
Typical series inductance	L _S	Measured from tab to mounting plane 3.5		nH		
Maximum voltage rate of change	dV/dt	Rated V _R 10 000 V		V/µs		

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and temperature range	l storage	T _J , T _{Stg}		-55 to +150	°C
Maximum thermal resignation to case	stance,	R _{thJC}	DC operation	0.50	°C/W
Typical thermal resista case to heatsink	nce,	R _{thCS}	Mounting surface, smooth and greased	0.30	-C/VV
Approximate weight				5	g
Mounting torque	minimum			1.2 (10)	N⋅m
ma:	maximum			2.4 (20)	(lbf \cdot in)
Marking device Case style PowerTab® 100E		100BG	Q030		

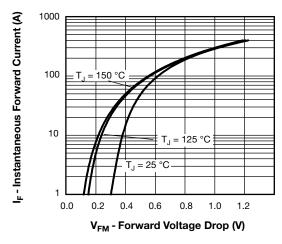


Fig. 1 - Maximum Forward Voltage Drop Characteristics

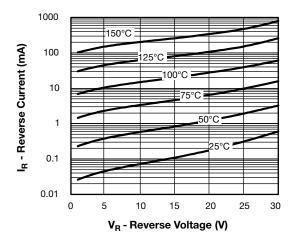


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

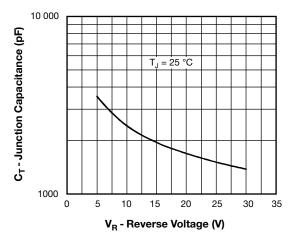


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

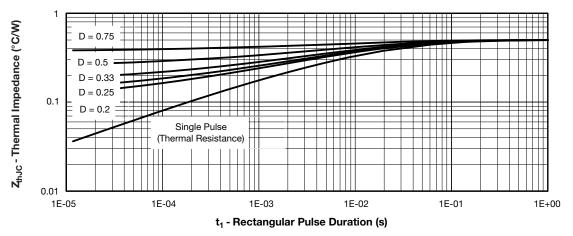


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

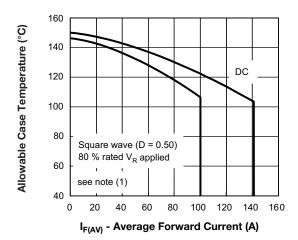


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

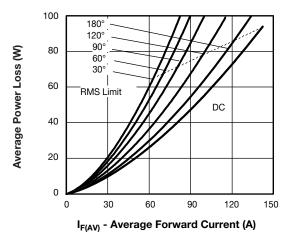
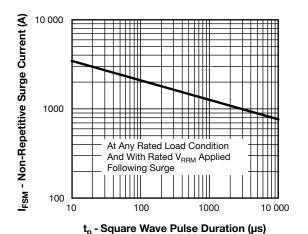
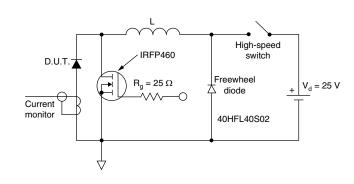



Fig. 6 - Forward Power Loss Characteristics



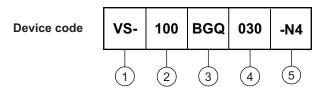

Fig. 7 - Maximum Non-Repetitive Surge Current

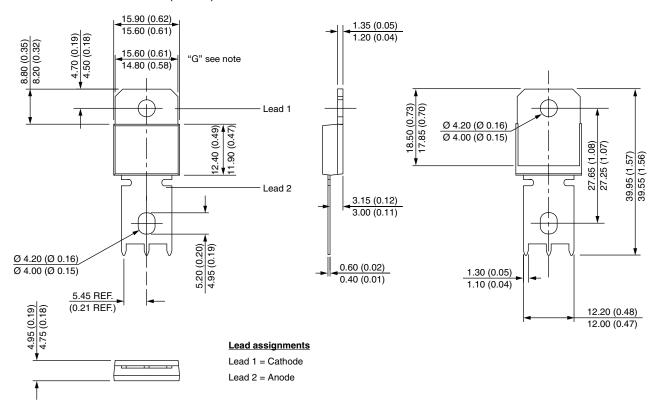
Fig. 8 - Unclamped Inductive Test Circuit

Note

 $\begin{array}{ll} \text{(1)} & \text{Formula used: } T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC}; \\ Pd = & \text{forward power loss} = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6)}; \\ Pd_{REV} = & \text{inverse power loss} = V_{R1} \times I_R \text{ (1 - D); } I_R \text{ at } V_{R1} = 80 \text{ \% rated } V_R \\ \end{array}$

ORDERING INFORMATION TABLE

- 1 Vishay Semiconductors product
- Current rating (100 = 100 A)
- 3 Essential part number
 - Voltage rating (030 = 30 V)
- 5 Environmental digit:
 - -N4 = Halogen-free, RoHS compliant, and totally lead (Pb)-free


ORDERING INFORMATION (Example)				
PREFERRED P/N	BASE QUANTITY	PACKAGING DESCRIPTION		
VS-100BGQ030-N4	25/tube	Antistatic plastic tube		

LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95240</u>				
Part marking information	www.vishay.com/doc?95467			
Application note	www.vishay.com/doc?95179			

PowerTab®

DIMENSIONS in millimeters (inches)

Note:

Outline conform to JEDEC® TO-275, except for dimension "G" only

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.