Vishay General Semiconductor

Surface-Mount ESD Capability Rectifier

www.vishay.com

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS					
I _{F(AV)}	8 A				
V _{RRM}	400 V, 600 V				
I _{FSM}	110 A				
V _F at I _F = 8 A (T _J = 125 °C)	0.92 V				
T _J max.	175 °C				
Package	SlimDPAK 2L				
Circuit configurations	Single				

FEATURES

- Creepage and clearance distance 2.8 mm minimum
- Very low profile typical height of 1.3 mm
- · Ideal for automated placement
- Oxide planar chip junction
- Low forward voltage drop
- · ESD capability
- AEC-Q101 qualified
 - Automotive ordering code: base P/NHM3
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

General purpose, power line polarity protection, in both industry and automotive on board charger (OBC) applications.

MECHANICAL DATA

Case: SlimDPAK 2L

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant Base P/NHM3 - halogen-free, RoHS-compliant, and AEC-Q101 qualified

Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

M3 and HM3 suffix meets JESD 201 class 2 whisker test **Polarity:** as marked

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	SE80PWTG	SE80PWTJ	UNIT		
Device marking code		SE80PWTG	SE80PWTJ			
Maximum repetitive peak reverse voltage	V _{RRM}	400	600	V		
Maximum average forward restified averant (Fig. 1)	I _{F(AV)} ⁽¹⁾	8.0		^		
Maximum average forward rectified current (Fig. 1)	I _{F(AV)} ⁽²⁾	2.	— A			
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	110				
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +175				

Notes

⁽¹⁾ With infinite heatsink

⁽²⁾ Free air, mounted on recommended copper pad area

HALOGEN

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS ($T_J = 25 \text{ °C}$ unless otherwise noted)						
PARAMETER	TEST CONDITIONS		SYMBOL	TYP.	MAX.	UNIT
Maximum Instantaneous forward voltage	$I_{F} = 4.0 \text{ A}$	– T _J = 25 °C	V _F ⁽¹⁾	0.93	-	V
	I _F = 8.0 A			1.01	1.12	
	I _F = 4.0 A	T _J = 125 °C		0.82	-	
	I _F = 8.0 A			0.92	1.07	
Reverse current	Rated V _B	T _J = 25 °C	I _R ⁽²⁾	-	15	μA
	naleu v _R	T _J = 125 °C		19	150	
Typical reverse recovery time	$I_F = 0.5 \text{ A}, I_R = 1.0 \text{ A}, I_{rr} = 0.25 \text{ A}$		t _{rr}	2400	-	ns
Typical junction capacitance	4.0 V, 1 MHz		CJ	58	-	pF

Notes

 $^{(1)}\,$ Pulse test: 300 μs pulse width, 1 % duty cycle

⁽²⁾ Pulse test: pulse width \leq 40 ms

THERMAL CHARACTERISTICS ($T_A = 25 \text{ °C}$ unless otherwise noted)					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Typical thermal resistance	R _{0JA} (1)(2)	76	95	°C/W	
	R _{θJM} ⁽³⁾	2.4	3		

Notes

⁽¹⁾ The heat generated must be less than thermal conductivity from junction-to-ambient: $dP_D/dT_J < 1/R_{\theta JA}$

(2) Thermal resistance junction to ambient to follow JEDEC® 51-2A, device mounted on FR4 PCB, 2 oz., standard footprint

⁽³⁾ Thermal resistance junction-to-mount to follow JEDEC[®] 51-14 transient dual interface test method (TDIM)

IMMUNITY TO ELECTRICAL STATIC DISCHARGE TO THE FOLLOWING STANDARDS ($T_A = 25$ °C unless otherwise noted)						
STANDARD	TEST TYPE	TEST CONDITIONS	SYMBOL	CLASS	VALUE	
AEC-Q101-001	Human body model (contact mode)	C = 100 pF, R = 1.5 kΩ	V _C	H3B	> 8 kV	

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	IIT WEIGHT (g) PREFERRED PACKAGE CODE BASE QUANTI		DELIVERY MODE		
SE80PWTJ-M3/I	0.184	I	4500	13" diameter plastic tape and reel		
SE80PWTJHM3/I ⁽¹⁾	0.184	l	4500	13" diameter plastic tape and reel		

Note

(1) AEC-Q101 qualified

Vishay General Semiconductor

RATINGS AND CHARACTERISTICS CURVES ($T_A = 25$ °C unless otherwise noted)

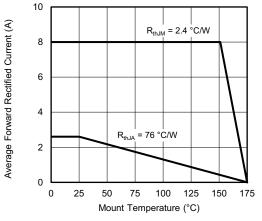


Fig. 1 - Maximum Forward Current Derating Curve

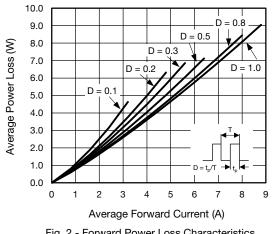
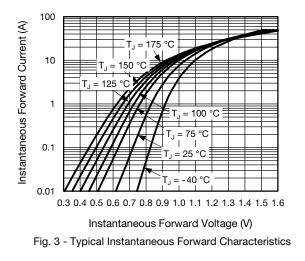



Fig. 2 - Forward Power Loss Characteristics

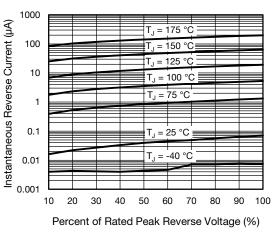
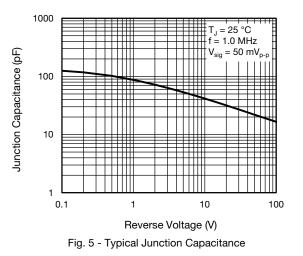



Fig. 4 - Typical Reverse Leakage Characteristics

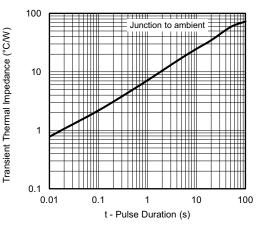


Fig. 6 - Typical Transient Thermal Impedance

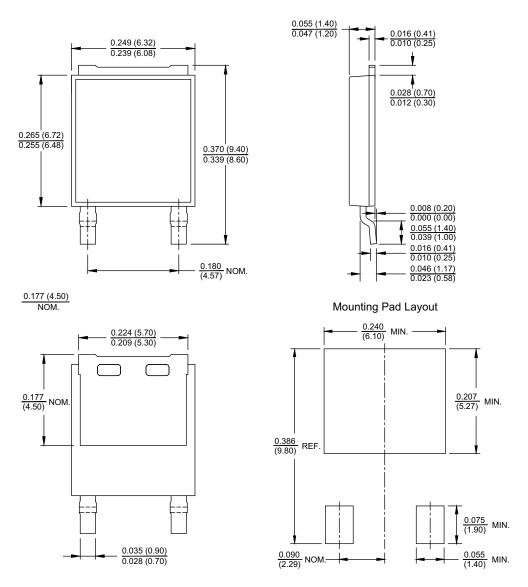
Revision: 15-Apr-2024

3

Document Number: 98189

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

SE80PWTG, SE80PWTJ


Vishay General Semiconductor

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

www.vishay.com

VISHAY

SlimDPAK 2L

Note

• The suggested mounting pad layout is provided for reference only, as actual pad layouts may vary depending on application

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1