How to Calculate Power Losses in Gen 5 Diodes

By Davide Daprà

INTRODUCTION

The aim of this application note is to explain a simple procedure for evaluating power losses in Gen 5 diodes.
Our family of Gen 5 diodes consists of ultrafast devices with breakdown voltages of 600 V and 1200 V that are designed to deliver the highest efficiency in high frequency switching circuits. In these circuits, the diodes work in two conditions: forward and reverse.
In the forward condition, diodes carry the current while showing the lowest resistance at the current flow (ON state) and the lowest possible voltage anode to cathode.
In the reverse condition, the voltage anode to cathode across the diode is negative (OFF state) and the device is like an open circuit; the current flowing through the diode - the leakage current - is very small.
Fig. 1 shows the visible voltage and current in a typical working condition for a diode in a switching circuit, such as a buck converter.

$t_{s w}$ switching period $=1 / f_{s w}$
$\mathrm{t}_{\text {on }}$ ON time, diode is in forward
$\mathrm{t}_{\text {sw }}-\mathrm{t}_{\mathrm{on}}$ OFF time diode is in reverse (CCM mode)
$d=\frac{t_{\text {on }}}{t_{\text {sw }}}$ duty cycle
I_{F} diode current forward current positive reverse current negative leakage
V_{F} diode voltage positive anode to cathode

Fig. 1 - Diode Current
The transition between the forward and reverse conditions is called recovery. Forward recovery is when a diode goes from the OFF state to the ON state. Reverse recovery is when a diode goes from the ON state to the OFF state. These transitions are associated with losses, known as switching losses. Usually, forward recovery losses are negligible; but reverse recovery losses - particularly those in high frequency circuits - can be a non-negligible portion of losses present in the diode.

This application note focuses on losses present during the forward and reverse conditions, not those related to the state change (switching losses). Switching losses are strongly dependent on diode working conditions, reverse voltage, di/dt, the inductance and a number of external factors, like the active switch and how the switch is driven.

A separate analysis is often only possible on real circuits, because during the design phase stray inductances are not well known. So, the analysis should be performed on prototypes or very detailed models. Conduction losses can be evaluated with high accuracy using the below model and procedure. It should be taken into account that Gen 5 diodes are available in two speeds: H and X . Both devices are ultrafast, but the H series is optimized for conduction losses and the X series is optimized for switching losses. This means that forward voltage and related conduction losses are different for the two devices. Selecting the right diode speed can be a matter of balancing losses, i.e. when conduction and switching losses are in the same order of magnitude or their sum is minimized.
The total losses are key for choosing a device. Both series are able to switch with high di/dt at high voltage and temperature, but it is the amount of losses related to switching frequency that define which speed is right.

The DNA of tech＇：

How to Calculate Power Losses in Gen 5 Diodes

This application note focuses on conduction losses that are related to the voltage across the diode．
In every condition，conduction losses for the H series are lower than the X series，but switching losses are different and their contribution should be added to conduction losses to understand if the total losses are minimized with an H speed or X speed device during the forward state and leakage current during the reverse state．The ideal diode has a forward voltage of 0 V and reverse current of 0 A ．A real device has a certain voltage anode to cathode that changes as a function of current and temperature when it is ON，and leakage that changes as a function of reverse voltage and temperature when it is OFF．The product voltage times current gives instantaneous power across the diode，whether ON or OFF．The average power dissipated in the diode could be summarize in Formula 1.1
1.1

$$
P_{D A V G}=V_{F} \times I_{F} \times \frac{t_{o n}}{t_{S W}}+V_{R} \times I_{R} \times \frac{t_{\text {off }}}{t_{S W}}
$$

where V_{F} is the forward voltage when the diode is $O N$ and the current flow is I_{F} ．I_{R} is the current through the diode when the reverse voltage is V_{R} ．The weighted average gives the dissipated power in the diode．In a periodic condition t_{on} is time when the diode is $O N$ and $t_{\text {off }}$ is time when the diode is OFF．$t_{\text {SW }}$ is the period of the cycle that could be different from the sum of $t_{\text {on }}$ and $t_{\text {off．}}$ When the diode is not ON or OFF，it is in idle and very small reverse losses or no losses are related to this phase．
The difference between the forward and reverse conditions is that in the forward condition，the voltage across the diode is small and the current could be large．During the reverse condition，the voltage could be around 80% of the rated voltage，but the leakage current is extremely small．

BEHAVIOR OF DIODE FORWARD VOLTAGE

A large portion of dissipated power is related to the forward voltage drop，so understanding the behavior of the anode to cathode voltage drop helps in understanding the model for the losses calculation．The forward voltage of Gen 5600 V and 1200 V diodes is plotted in Fig． 2 and Fig． 3.

Fig． 2 －Forward Current Characteristics for the 30 A， 600 V，E5TH3006

How to Calculate Power Losses in Gen 5 Diodes

Fig. 3 - Forward Current Characteristics for the 30 A, 1200 V, E5TH3012
It can be seen that the forward voltage drop is mainly a function of current and temperature in the junction. The relationship between current and forward voltage for a simple PN junction is
1.2

$$
i_{D}=I_{S}(T)\left(e^{\left(\frac{q^{v} D}{n k T}\right)}-1\right)=I_{S}(T)\left(e^{\left(\frac{V_{D}}{n V_{T}}\right)}-1\right) \text { with } I_{S}(T)=q_{e} A N_{i}^{2}\left(\frac{1}{N_{D}(T)} \times \sqrt{\frac{D_{p}}{\tau_{p}}+\frac{1}{N_{A}(T)}} \times \sqrt{\frac{D_{n}}{\tau_{n}}}\right)
$$

Formula 1.2 (the Shockley equation) is a good model for diodes built with a PN junction with step symmetrical doping, like in Fig. 4.

Fig. 4 - Simple PN Junction
This kind of structure works fine for diodes with low breakdown voltage. For devices with a breakdown voltage of 600 V or 1200 V another structure is required: the PiN junction, as shown in Fig. 5.

Fig. 5 - High Voltage Device PiN Junction

How to Calculate Power Losses in Gen 5 Diodes

Equation 1.3 gives the forward voltage of the diode as a function of current. From a physical point of view, the meaning of each term could be written as
1.4 $\quad V_{F}=A+\frac{n}{\frac{q}{k T}} \ln \left(\frac{I_{F}}{I_{s}}\right)+R_{T 0} I_{F}+D \sqrt{I_{F}}$
where
A is the threshold voltage and
B terms derive from approximate solution of equation 1.2

$$
\begin{aligned}
& I(V)=I_{S}\left(\exp \left(\frac{q V}{n k T}\right)-1\right) \rightarrow V(I) \approx \frac{1}{\frac{q}{n k T}} \ln \left(\frac{I}{I_{S}}\right) \rightarrow V(I)=\frac{1}{\frac{q}{n k T}}\left(\ln (I)-\ln \left(I_{S}\right)\right) \rightarrow \frac{1}{\frac{q}{n k T}} \ln (I) \\
& B \text { is } \frac{1}{\frac{q}{n k T}}
\end{aligned}
$$

and it change in the function of the technology ($\mathrm{Si}, \mathrm{Ge}, \mathrm{SiC}, \mathrm{GaN} . .$.). Due to these approximations, the model cannot work at zero current or very small current (usually lower than $1 / 50$ of rated current). In a real application a current lower than $1 / 50$ of the rated current does not contribute to total losses. If the device is working with a larger current than $10 \times I_{\mathrm{S}}$, as is common in real applications, the formula 1.3 is a good model.
C is the $R_{t 0}$, the term that takes in account the series resistance of the diode.
D is a coefficient that improve the accuracy of curve fit at current level around the middle of rated current.
With a real device, the coefficients ABCD are evaluated from the typical forward voltage curve (the typical device is the average of many measurements). The coefficients ABCD are the best fit for the forward voltage curve.

Fig. 6 - The Forward Voltage as a Function of Current for a Typical E5TH3006, Measured and Simulated
From the graph in Fig. 6, the model seems to be accurate for a current higher than $1 / 10$ of the rated current (for a lower current, it shows small differences like other models, such as SPICE), and follows quite well the behavior of forward voltage at high current. This is required because Gen 5 diodes could switch at a current that is three times the rated current and the limit is substantially thermal, this is important to estimate the losses in a working condition with a high crest factor that has high power dissipated associated.

How to Calculate Power Losses in Gen 5 Diodes

Fig. 7 - The Forward Voltage as a Function of Current for a Typical E5TH3006, Measured and Simulated at Low Current
In Fig. 7 there is a magnification of Fig. 6, in which it is possible see the behavior of the measurement modeled at a low current. The lower limit is 0.1 A because Formula 1.3 cannot accept current values around 0 A , as opposed to formula 1.2, where 0 V means 0 A in the diode. For a practical evaluation of power losses, the range of most interest is well covered by formula 1.3, and the very low current value can be neglected.
To evaluate the losses, if the current through the diode is DC or rectangular, formula 1.3 is very precise, but the real application has different characteristics.

1. The current in a real application usually has a shape different from the DC or perfectly rectangular waveform
2. The diode through which the current flows gets hot and ABCD parameters change

From Fig. 2 and Fig. 3, it is clear that the T_{j} temperature is an important factor for the evaluation of power dissipated in the diode, because it has an influence on the forward voltage and leakage current.
To take the effects of temperature into account, it is necessary to add at the four ABCD parameters another set of (coefficient $\mathrm{ka}, \mathrm{kb}, \mathrm{kc}, \mathrm{kd}$) data that describes the behavior of the ABCD parameters with temperature.

$$
\text { 1.5 } \quad V_{F}\left(I_{F}\right)=A\left(1+k a\left(T_{j}-25\right)\right)+B\left(1+k b\left(T_{j}-25\right)\right) \times \ln \left(I_{F}\right)+C\left(1+k c\left(T_{j}-25\right)\right) \times I_{F}+D\left(1+k d\left(T_{j}-25\right)\right) x \sqrt{I_{F}}
$$

Formula 1.5 could be a simple model of forward voltage as a function of temperature if the ABCD coefficients are linear with the temperature.

Fig. 8 - Behavior as a Function of the Temperature of ABCD Coefficients

Note

- ka, kb, kc, kd, represent the behavior of parameters ABCD with temperature

The DNA of tech':'

How to Calculate Power Losses in Gen 5 Diodes

This approach is not general and the variation of the ABCD parameters could be very non-linear. In this case, the Gen 5 diode is developed to minimize the effect of temperature on series resistance, so a 1° order model is enough to obtain an accurate result. Other technology can have completely different behavior with temperature and formula 1.5 will give a poor result. This behavior of Gen 5 diodes is obtained with a special thin wafer technology that minimizes the effect of resistance variation with temperature. This characteristic is visible in the forward voltage curve in Fig. 2 and Fig. 3, where the slope of the V_{F} curve is quite constant with temperature (V_{F} curves at high current are parallel) and the temperature coefficient kc of the C parameter is very small.
The temperature only has the ability to affect the threshold voltage, as is visible from the thermal coefficient ka of the A parameter. This is good for thermal stability because increasing the temperature decrease the losses. This characteristic only requires precautions when many devices are used in parallel. Usually, if devices are from the same lot, using two or more in parallel is enough a good thermal coupling (all devices should be mounted on the same heatsink) and the current path should be symmetrical. These simple precautions are enough for a good current share.
A minimum of eight parameters are required to do the evaluation of forward voltage, and if the current has a shape different from the DC or rectangular, is necessary to repeat the evaluation of forward voltage for each value of current, point by point.
This approach would be good for a simulator, but for a preliminary evaluation like the choice of a device, it is more practical to use the piecewise approach.
The forward voltage curve of a diode could be approximated with the piecewise method:

Fig. 9 - Forward Voltage of a Real Diode and Piecewise Model
The electrical equivalent circuit of the piecewise model is shown in Fig. 9, and with this network the evaluation of losses becomes quite simple and is enough to apply Formula 1.6:
1.6 $P_{D}=V_{T O} \times I d_{A V G}+R_{D} \times I d^{2}{ }_{R M S}$

Diode average current and RMS current are easy to evaluate for many current waveforms (see Figure A) or from any simulation in which it is simple to obtain the average and RMS value of the current in the device. Usually, it's simple do a simulation with an ideal diode, and after evaluating the losses in the diode, using the average and RMS value of the simulated current. Usually, an ideal rectifier or real diode model in a power circuit doesn't change the simulation result much. If this happens, it means that losses in the diode are not negligible and usually are not the desiderata in high efficiency circuitry.
$V_{T O}$ and R_{D} are two parameters that are related to coefficients A and C, and from a numerical point of view they are similar. Often $V_{T O}$ and R_{D} are confused with V_{d} and r_{d}, which are the parameters for small-signal diodes. r_{d} (dynamic resistance) is defined as the tangent to the forward voltage curve, while V_{d} is the cross of the r_{d} line with the abscissa axis. For power applications, instead of a tangent the slope of a straight line between two points on the forward voltage curve is often used, which corresponds to a current range where the device could work. These different approaches are shown in Fig. 10.

How to Calculate Power Losses in Gen 5 Diodes

Fig. 10 - Differences Between the Small Signal and Wide Range Approaches
The r_{d} is a tangent point on the V_{F} curve because in theory we are using this model for a small signal, and the current running through the device doesn't change much. In a power circuit the current level could be very different, so evaluate the R_{D} as an intercept point on a certain range gives a more accurate result.
The V_{TO} and R_{D} given for Gen 5 diodes are evaluated as coefficients to fit the power losses. The coefficients lose physical meaning and become two parameters for evaluating the power dissipated in the diode.
The procedure for obtaining $V_{T O}$ and R_{D} (sometimes called $R_{T O}$ when it is referred to in the context of a thyristor) is based on an accurate evaluation of power losses in the diode, using the forward voltage across the diode as the model for Formula 1.3. The power losses are calculated point by point on the current waveform (like in SPICE simulations).
At the same time the average current value and the RMS current value are calculated on the current waveform.
Doing this for different current level and shapes, and having the avg current and the RMS value $V_{T O}$ and R_{D} are evaluated as the best fit that give the same power calculated with Formula 1.6 and the simulation based on Formula 1.3.
The obtained model of $V_{T 0}$ and R_{D} is valid at certain T_{j} considered constant during simulation and in the range of current used to evaluate the power.
In Fig. 1 and Fig. 2, the variation of forward voltage with temperature is visible. For normal applications, the T_{j} could go from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, but the device could also be used in a more stressful condition from $-40^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$, so it is not possible to neglect the effect of temperature on the diode's characteristics. It is possible to extend Formula 1.6 as a function of temperature by adding temperature coefficients (K_{V} and K_{R}) for $V_{T O}$ and R_{D}.
$1.7 \mathrm{~V}_{\mathrm{T} 0}\left(\mathrm{~T}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{V}} \times\left(\mathrm{T}_{\mathrm{j}}-25\right)+\mathrm{V}_{\mathrm{T} 0}\left(25^{\circ} \mathrm{C}\right)$
$R_{D}\left(T_{j}\right)=k_{R} \times\left(T_{j}-25\right)+R_{D}\left(25^{\circ} \mathrm{C}\right)$

The DNA of tech':

How to Calculate Power Losses in Gen 5 Diodes

Fig. 11 - T_{j} and Power Losses Evaluation Flow Chart
Note that the SPICE simulation of the diode could be done at a certain T_{j}, but it is fixed during the simulation. Only a different simulator (usually an event-based simulator) can take the effect of temperature during simulation into account. Doing this in SPICE requires the implementation of a thermo electrical model separated from the native SPICE model of the diode.

Vishay Semiconductors
The DNA of tech':'

How to Calculate Power Losses in Gen 5 Diodes

The coefficients for different devices are in the following table:

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$ (A)	DEVICE	PACKAGE	$\begin{gathered} \mathbf{V}_{\mathbf{F}} \text { at } \mathrm{I}_{\mathrm{F}} \\ (\mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ (\mathrm{~ns}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{V}_{\text {TO }}\left(25^{\circ} \mathrm{C}\right) \\ (\mathrm{V}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{D}}\left(25^{\circ} \mathrm{C}\right) \\ (\Omega) \\ \hline \end{gathered}$	$\begin{gathered} k_{v} \\ \left({ }^{\circ} C^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} K_{R} \\ \left({ }^{\left({ }^{-}-1\right.}\right) \\ \hline \end{gathered}$
15	VS-E5TH1506-M3	TO-220AC	1.15	31	0.8437	0.0334	-0.002182	0.00002524
15	VS-E5TH1506S2LHM3	$\begin{gathered} \mathrm{D}^{2} \text { PAK 2L } \\ \text { (TO-263AB 2L) } \end{gathered}$	1.15	31	0.8437	0.0334	-0.002182	0.00002524
15	VS-E5TH1506THN3	TO-220AC	1.15	31	0.8437	0.0334	-0.002182	0.00002524
15	VS-E5TX1506-M3	TO-220AC	1.3	23	0.9240	0.0476	-0.002753	-0.00001676
15	VS-E5TX1506S2LHM3	$\begin{gathered} D^{2} \text { PAK 2L } \\ (\text { TO-263AB 2L) } \end{gathered}$	1.3	23	0.9240	0.0476	-0.002753	-0.00001676
15	VS-E5TX1506THN3	TO-220AC	1.3	23	0.9240	0.0476	-0.002753	-0.00001676
30	VS-A5PH3006LHN3	TO-247AD 3L	1.15	41	0.8470	0.0163	-0.002239	0.00001735
30	VS-A5PH3006L-N3	TO-247AD 3L	1.15	41	0.8470	0.0163	-0.002239	0.00001735
30	VS-A5PX3006LHN3	TO-247AD 3L	1.3	39	0.9181	0.0230	-0.002739	0.0000004088
30	VS-A5PX3006L-N3	TO-247AD 3L	1.3	39	0.9181	0.0230	-0.002739	0.0000004088
30	VS-E5PH3006LHN3	TO-247AD 2L	1.15	41	0.8470	0.0163	-0.002239	0.00001735
30	VS-E5PH3006L-N3	TO-247AD 2L	1.15	41	0.8470	0.0163	-0.002239	0.00001735
30	VS-E5PX3006LHN3	TO-247AD 2L	1.3	39	0.9181	0.0230	-0.002739	0.0000004088
30	VS-E5PX3006L-N3	TO-247AD 2L	1.3	39	0.9181	0.0230	-0.002739	0.0000004088
30	VS-E5TH3006-M3	TO-220AC	1.15	41	0.8429	0.0176	-0.002247	0.0000142
30	VS-E5TH3006S2LHM3	$\begin{gathered} \mathrm{D}^{2} \text { PAK 2L } \\ \text { (TO-263AB 2L) } \end{gathered}$	1.15	41	0.8429	0.0176	-0.002247	0.0000142
30	VS-E5TH3006THN3	TO-220AC	1.15	41	0.8429	0.0176	-0.002247	0.0000142
30	VS-E5TX3006-M3	TO-220AC	1.3	39	0.9276	0.0242	-0.002788	-0.000005987
30	VS-E5TX3006S2LHM3	$\begin{gathered} \text { D²PAK 2L }^{(T O-263 A B ~ 2 L) ~} \end{gathered}$	1.3	39	0.9276	0.0242	-0.002788	-0.000005987
30	VS-E5TX3006THN3	TO-220AC	1.3	39	0.9276	0.0242	-0.002788	-0.000005987
60	VS-A5PH6006LHN3	TO-247AD 3L	1.2	49	0.8538	0.0091	-0.002201	0.00001101
60	VS-A5PH6006L-N3	TO-247AD 3L	1.2	49	0.8538	0.0091	-0.002201	0.00001101
60	VS-A5PX6006LHN3	TO-247AD 3L	1.4	44	0.9443	0.0128	-0.002838	0.000003013
60	VS-A5PX6006L-N3	TO-247AD 3L	1.4	44	0.9443	0.0128	-0.002838	0.000003013
60	VS-E5PH6006LHN3	TO-247AD 2L	1.2	49	0.8538	0.0091	-0.002201	0.00001101
60	VS-E5PH6006L-N3	TO-247AD 2L	1.2	49	0.8538	0.0091	-0.002201	0.00001101
60	VS-E5PX6006LHN3	TO-247AD 2L	1.4	44	0.9443	0.0128	-0.002838	0.000003013
60	VS-E5PX6006L-N3	TO-247AD 2L	1.4	44	0.9443	0.0128	-0.002838	0.000003013
75	VS-E5PH7506LHN3	TO-247AD 2L	1.2	52	0.8210	0.0071	-0.002134	0.000009555
75	VS-E5PH7506L-N3	TO-247AD 2L	1.2	52	0.8210	0.0071	-0.002134	0.000009555
75	VS-E5PX7506LHN3	TO-247AD 2L	1.4	44	0.9004	0.0101	-0.002707	0.000009592
75	VS-E5PX7506L-N3	TO-247AD 2L	1.4	44	0.9004	0.0101	-0.002707	0.000009592

Note

- Coefficient valid for current $\mathrm{I}_{\mathrm{F}} \leq 2$ times rated current

Vishay Semiconductors
The DNA of tech.'

How to Calculate Power Losses in Gen 5 Diodes

$\begin{aligned} & \left.\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \mathrm{A}\right) \end{aligned}$	DEVICE	PACKAGE	$\begin{gathered} V_{F} \text { at } I_{F} \\ \text { (V) } \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{rrr}} \\ (\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathbf{V}_{\text {TO }}\left(25^{\circ} \mathrm{C}\right) \\ (\mathrm{V}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{D}}\left(25^{\circ} \mathrm{C}\right) \\ (\Omega) \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{v}} \\ \left({ }^{\circ} \mathrm{C}^{-1}\right) \end{gathered}$	$\begin{gathered} k_{R} \\ \left({ }^{\circ} \mathrm{C}^{-1}\right) \end{gathered}$
8	VS-E5TH0812-M3	TO-220AC	1.8	100	1.0776	0.1162	-0.002702	0.000133
8	VS-E5TH0812THN3	TO-220AC	1.8	100	1.0776	0.1162	-0.002702	0.000133
8	VS-E5TX0812-M3	TO-220AC	2.1	87	1.2269	0.1696	-0.003774	-0.00000323
8	VS-E5TX0812THN3	TO-220AC	2.1	87	1.2269	0.1696	-0.003774	-0.00000323
15	VS-E5TH1512-M3	TO-220AC	1.7	95	1.0609	0.0585	-0.002664	0.00006709
15	VS-E5TH1512S2LHM3	$\begin{gathered} \text { D}^{2} \text { PAK 2L } \\ \text { (TO-263AB 2L) } \\ \hline \end{gathered}$	1.7	95	1.0609	0.0585	-0.002664	0.00006709
15	VS-E5TH1512THN3	TO-220AC	1.7	95	1.0609	0.0585	-0.002664	0.00006709
15	VS-E5TX1512-M3	TO-220AC	2.1	96	1.2161	0.0823	-0.003693	0.000008099
15	VS-E5TX1512S2LHM3	$\begin{gathered} \mathrm{D}^{2} \text { PAK 2L } \\ \text { (TO-263AB 2L) } \\ \hline \end{gathered}$	2.1	96	1.2161	0.0823	-0.003693	0.000008099
15	VS-E5TX1512THN3	TO-220AC	2.1	96	1.2161	0.0823	-0.003693	0.000008099
30	VS-E5PH3012LHN3	TO-247AD 2L	1.7	113	1.0841	0.0315	-0.003002	0.00003497
30	VS-E5PX3012LHN3	TO-247AD 2L	2.1	100	1.2325	0.0439	-0.003883	-0.000004865
30	VS-E5TH3012-M3	TO-220AC	1.7	113	1.0841	0.0315	-0.003002	0.00003497
30	VS-E5TH3012S2LHM3	$\begin{gathered} \text { D}^{2} \text { PAK 2L } \\ \text { (TO-263AB 2L) } \end{gathered}$	1.7	113	1.0841	0.0315	-0.003002	0.00003497
30	VS-E5TH3012THN3	TO-220AC	1.7	113	1.0841	0.0315	-0.003002	0.00003497
30	VS-E5TX3012-M3	TO-220AC	2.1	100	1.2325	0.0439	-0.003883	-0.000004865
30	VS-E5TX3012S2LHM3	$\begin{gathered} \mathrm{D}^{2} \text { PAK 2L } \\ (\mathrm{TO}-263 \mathrm{AB} 2 \mathrm{~L}) \end{gathered}$	2.1	100	1.2325	0.0439	-0.003883	-0.000004865
30	VS-E5TX3012THN3	TO-220AC	2.1	100	1.2325	0.0439	-0.003883	-0.000004865
60	VS-E5PH6012LHN3	TO-247AD 2L	1.7	130	1.0506	0.0150	-0.002767	0.00002112
60	VS-E5PX6012LHN3	TO-247AD 2L	2.1	120	1.2296	0.0224	-0.00394	0.000001132
30	VS-E5PX3012L-N3	TO-247AD	2.1	26	1.2325	0.0439	-0.003883	-0.000004865
30	VS-E5TX3012-N3	TO-220AC	2.1	26	1.2325	0.0439	-0.003883	-0.000004865
30	VS-E5PH3012L-N3	TO-247AD	1.7	32	1.0841	0.0315	-0.003002	0.00003497
30	VS-E5TH3012-N3	TO-220AC	1.7	32	1.0841	0.0315	-0.003002	0.00003497
60	VS-E5PX6012L-N3	TO-247AD	2.1	30	1.2296	0.0224	-0.00394	0.000001132
60	VS-E5PH6012L-N3	TO-247AD	1.7	38	1.0506	0.0150	-0.002767	0.00002112

Note

- Coefficient valid for current $\mathrm{I}_{\mathrm{F}} \leq 2$ times rated current

The DNA of tech':'

How to Calculate Power Losses in Gen 5 Diodes

BEHAVIOR OF REVERSE CURRENT

During the OFF state, the diode can't be polarized or the voltage anode cathode is negative.
The leakage current is a function of the reverse voltage and temperature. The leakage current for $30 \mathrm{~A}, 600 \mathrm{~V}$, and 1200 V devices is plotted in Fig. 12 and Fig. 13.

Fig. 12 - VS-E5TH3006 Leakage Current as a Function of Cathode Anode Voltage and Temperature

Fig. 13 - VS-E5TH3012 Leakage Current as a Function of Cathode Anode Voltage and Temperature
The temperature is a key parameter for the leakage because its behavior is exponential with temperature.
The absolute value is very small, but at a high voltage - for example, $1000 \mathrm{~V}-1 \mathrm{~mA}$ gives a dissipated power of 1 W . The leakage current grows with temperature, as in Formula 1.8.
$1.8 \quad I_{R}=I_{R 0}\left(V_{R}\right) \times \exp \left(C\left(V_{R}\right) \times T_{j}\right)$

Usually, if the working T_{j} is lower than $150^{\circ} \mathrm{C}$, its contribution is negligible and the evaluation of losses could be left out, particularly for 600 V devices. In Fig. 14, the behavior of the VS-E5PH3006 as a function of temperature is plotted.

How to Calculate Power Losses in Gen 5 Diodes

Fig. 14 - VS-E5TH3012 Leakage Current as a Function of Temperature, with a Cathode Anode Voltage of 600 V
For Gen $5600 \mathrm{~V}, 30 \mathrm{~A}$ diodes, if the reverse voltage is 600 V and T_{j} is $175^{\circ} \mathrm{C}$, the leakage current typically is $182 \mu \mathrm{~A}$, which means that dissipated power is $600 \mathrm{~V} \times 182 \mu \mathrm{~A}=109 \mathrm{~mW}$. Also, for a device without a heatsink, the level of dissipated power is negligible. In the datasheet there is also a maximum value at $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ given that is not a limit of the device; it is a value obtained from statistical analysis of data that indicates the threshold where the probability of finding a device with this value of leakage current is near to zero. If this value is used for a worst case analysis, it gives a very large margin that isn't realistic. For an evaluation of the leakage current contribution, it's better to refer to the datasheet's graph of "Typical Values of Reverse Current vs. Reverse Voltage".
For a 1200 V device, the leakage current is a little bit higher. The real difference in reverse losses, however, is the level of voltage, which for 1200 V applications is usually nearly double compared with circuits using 600 V devices.
As an example, the VS-E5TX3012 has at 1000 V (a high voltage, but possible in many applications) and a T_{j} of $175{ }^{\circ} \mathrm{C}$ a typical leakage of around $530 \mu \mathrm{~A}$. The dissipated power is $1000 \mathrm{~V} \times 530 \mu \mathrm{~A}=530 \mathrm{~mW}$, which in a marginal device could be little bit higher. 0.6 W of losses in reverse polarization is a worst case scenario with a small probability, but is still possible. The reverse polarization losses should be multiplied for the time that the device is in the OFF condition with applied reverse voltage. Usually, for a device on a heatsink, the power due to reverse losses is negligible for 600 V devices. For 1200 V devices, if the reverse voltage is over 800 V , it's best to do a quick check to verify that reverse polarization power losses are negligible, especially if the device works without a heatsink.
The leakage at certain temperatures could be evaluated from the datasheet using Formula 1.8, keeping in mind that values obtained from the maximum are only statistical limits, and their use in real evaluations give an overestimation of real losses.
I_{RO} and C could be evaluated from the datasheet, and are valid for a fixed reverse voltage.
For Gen 5 diodes, $I_{R 0}$ and C are quite constant if the reverse voltage doesn't change too much, so it's not necessary to re-evaluate the coefficient if the reverse voltage does not change more than $\pm 100 \mathrm{~V}$.

How to Calculate Power Losses in Gen 5 Diodes

EXAMPLE OF EVALUATION

Let's consider an LLC rectifier for a 22 kW on-board charger (OBC, Fig. 15) that is working at near to resonance at 100 kHz , with 700 V of output voltage and 32 A of output current.
The system is air-cooled.

Fig. 15 - LLC Converter
The current at the output of the rectifier has the following shape:

Diodes current

Fig. 16 - Simplified Current Waveform at the Rectifier Output
The current could be considered sinusoidal and the duty cycle for each diode branch is around 46% of the total switching period.
Considering a full-bridge rectifier, the average current for each diode is half of the total output current, so 16 A .
From the table in Figure A, the sinusoidal current and peak current in the diode is:
$1.9 \mathrm{I}_{\text {max. }}=\left(\frac{\mathrm{I}_{\text {Favd }} \times \pi}{2}\right) / \mathrm{d}=\left(\frac{16 \times \pi}{2}\right) / 0.42=59.83 \mathrm{~A}$
So, the RMS current through each diode is:
$2.0 \mathrm{I}_{\mathrm{RMS}}=\mathrm{I}_{\max } \times \sqrt{\left(\frac{0.42}{2}\right)}=59.83 \times \sqrt{0.21}=27.41 \mathrm{~A}$
With a peak current of 59.8 A , average of 16 A , and reverse voltage of 700 V , the first choice could be the VS-E5TH3012.
The H speed is preferred because with an LLC circuit, switching losses are kept low by the natural behavior of the current, and a high current suggests a device with low forward voltage.
The power dissipated in each diode can be calculated with Formula 1.6 and the values in Table 2. Generally, in a steady-state condition the T_{j} will not be $25^{\circ} \mathrm{C}$ if system is not liquid cooled, so an initial T_{j} could be $75^{\circ} \mathrm{C}$. With Formula 1.7 it is possible to evaluate the $V_{\text {to }} R_{d}$ at $75^{\circ} \mathrm{C}$:

The DNA of tech':

How to Calculate Power Losses in Gen 5 Diodes

2.1

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T} 0}\left(\mathrm{~T}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{V}} \times\left(\mathrm{T}_{\mathrm{j}}-25\right)+\mathrm{V}_{\mathrm{TO}}\left(25^{\circ} \mathrm{C}\right)=-3.002 \mathrm{E}-3 \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{C}} \times\left(75^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)+1.084 \mathrm{~V}=0.934 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{R}} \times\left(\mathrm{T}_{\mathrm{j}}-25\right)+\mathrm{R}_{\mathrm{D}}\left(25^{\circ} \mathrm{C}\right)=-3.497 \mathrm{E}-5 \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{C}} \times\left(75^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)+0.0315 \Omega=0.0332 \Omega
\end{aligned}
$$

The dissipated power from formula 1.6:
2.2

$$
\mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{T} 0} \times \mathrm{Id}_{\mathrm{AVG}}+\mathrm{R}_{\mathrm{D}} \times \mathrm{Id}^{2} \mathrm{RMS}=0.934 \mathrm{~V} \times 16 \mathrm{~A}+0.0332 \Omega \times(27.41 \mathrm{~A})^{2}=39.89 \mathrm{~W}
$$

This is the power dissipated in the device during the ON phase; for the 52% of cycle time the device is in reverse with a reverse voltage $\mathrm{V}_{\text {OUT }}+2 \mathrm{~V}_{\mathrm{F}}$ to simplify $\mathrm{V}_{\text {OUT }}$, which is 700 V .
The leakage at $75^{\circ} \mathrm{C}$ could be evaluated from the datasheet - From Typical Values of Reverse Current vs. Reverse Voltage and formula 1.8.

Formula 1.8 became $\mathrm{I}_{\mathrm{R}}=0.0618 \times \exp \left(0.0526 \times \mathrm{T}_{\mathrm{j}}\right)=0.0618 \times \exp \times(0.0526 \times 75)=3.2 \mu \mathrm{~A}$ at 700 V , which means 2.3 mW is negligible at a temperature around $75^{\circ} \mathrm{C}$. The dissipated power for static losses is 39.9 W . In this condition, LLC under frequency resonance, these are the total losses, because switching losses are negligible.
Considering the worst case $\mathrm{R}_{\text {th }}$ from the datasheet of $1.2^{\circ} \mathrm{C} / \mathrm{W}$, and a heatsink thermal resistance of $1.5^{\circ} \mathrm{C} / \mathrm{W}$ at $40^{\circ} \mathrm{C}$ of ambient, the T_{j} is determined by formula 2.3.

2.3
 $$
\mathrm{T}_{\mathrm{j}}=\left(\mathrm{R}_{\mathrm{thjc}}+\mathrm{R}_{\mathrm{thca}}\right) \times \mathrm{P}_{\mathrm{D}}+\mathrm{T}_{\mathrm{amb}}=\left(1.2 \frac{\circ}{\mathrm{C}} \mathrm{C}+1.5 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{~W}}\right) \times 39.9 \mathrm{~W}+40^{\circ} \mathrm{C}=147^{\circ} \mathrm{C}
$$

This temperature is far from $75^{\circ} \mathrm{C}$, so it is better to redo the evaluation considering $\mathrm{T}_{\mathrm{j}}=147^{\circ} \mathrm{C}$. Back with formula 2.1, the evaluation becomes:
2.4

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T} 0}\left(\mathrm{~T}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{V}} \times\left(\mathrm{T}_{\mathrm{j}}-25\right)+\mathrm{V}_{\mathrm{T} 0}\left(25^{\circ} \mathrm{C}\right)=-3.002 \mathrm{E}-3 \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{C}} \times\left(147^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)+1.084 \mathrm{~V}=0.718 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{R}} \times\left(\mathrm{T}_{\mathrm{j}}-25\right)+\mathrm{R}_{\mathrm{D}}\left(25^{\circ} \mathrm{C}\right)=-3.497 \mathrm{E}-5 \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{C}} \times\left(147{ }^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)+0.0315 \Omega=0.0358 \Omega
\end{aligned}
$$

The dissipated power from formula 1.6:
$2.5 P_{d}=V_{T 0} \times I d_{A V G}+R_{D} \times d^{2}{ }_{R M S}=0.718 \mathrm{~V} \times 16 \mathrm{~A}+0.0358 \Omega \times(27.41 \mathrm{~A})^{2}=38.38 \mathrm{~W}$

The DNA of tech':'

How to Calculate Power Losses in Gen 5 Diodes

Formula 1.8 becomes $\mathrm{I}_{\mathrm{R}}=0.0618 \times \exp \left(0.0526 \times \mathrm{T}_{\mathrm{j}}\right)=0.0618 \times \exp \times\left(0.0526 \times 147^{\circ} \mathrm{C}\right)=141 \mu \mathrm{~A}$ at 700 V , which means that 98.7 mW is much higher than the previous evaluation, but as an absolute value is negligible compared to 38.38 W .

The T_{j} evaluation becomes:
$2.6 \quad \mathrm{~T}_{\mathrm{j}}=\left(\mathrm{R}_{\text {thjc }}+\mathrm{R}_{\text {thca }}\right) \times \mathrm{P}_{\mathrm{D}}+\mathrm{T}_{\mathrm{amb}}=\left(1.2 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{W}}+1.5 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{W}}\right) \times 38.38 \mathrm{~W}+40{ }^{\circ} \mathrm{C}=143^{\circ} \mathrm{C}$

Now the evaluated T_{j} is near the previous value, so this could be considered correct. The T_{j} is considered correct when the difference between the two steps is less than $5^{\circ} \mathrm{C}$.
The analysis of more complex circuits is possible, and simplified it is enough to evaluate the average and RMS current in the diode. For example, in a T-type Vienna rectifier (Fig. 17), the diode works as a boost device, switching at certain frequencies (such as $10 \mathrm{kHz}-20 \mathrm{kHz}$) for a half period and for the other half period it is in reverse.

Fig. 17 - T-type Vienna Rectifier
The input voltage is $400 \mathrm{~V}_{\mathrm{AC}}$ and power is 22 kW , with a DC bus of 750 V and switching frequency of 20 kHz . From these data, the average current in the diodes is 9.78 A for each. The modulation factor M is
$2.7 \mathrm{M}=\frac{\mathrm{V}_{\text {inpk }}}{\frac{1}{2} \mathrm{~V}_{\mathrm{PN}}}$
With $400 \mathrm{~V}_{\mathrm{AC}}, \mathrm{V}_{\mathrm{u}}$ is 565.7 V , so $\mathrm{M}=565.7 \mathrm{~V} /(1 / 2 \times 750 \mathrm{~V})=1.508$. From the average current, it is possible to calculate the peak current $\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\text {Davg }} \times 4 / \mathrm{M}=9.78 \mathrm{~A} \times 4 / 1.508=25.94 \mathrm{~A}$
From Figure A, it is possible obtain

$$
\mathrm{I}_{\mathrm{DRMS}}=\mathrm{Ia} \times \sqrt{\left(\frac{2 \times \mathrm{M}}{3 \times \pi}\right)}=25.94 \times \sqrt{\left(2 \times \frac{1.508}{3 \times \pi}\right)}=12.45 \mathrm{~A}
$$

For the T-type Vienna circuit, switching losses are not negligible, so usually a diode larger than 1.5 times the peak current is the starting point. The switching frequency is 20 kHz , so it is possible to do a preliminary evaluation with device X speed thinking di/dt higher than $500 \mathrm{~A} / \mu \mathrm{s}$. A suitable device could be the VS-E5PX6012L in the hypothesis of an initial T_{j} around $75{ }^{\circ} \mathrm{C}$ using Formula 1.7

The DNA of tech':

How to Calculate Power Losses in Gen 5 Diodes

2.8

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T} O}\left(\mathrm{~T}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{V}} \times\left(\mathrm{T}_{\mathrm{j}}-25\right)+\mathrm{V}_{\mathrm{T} 0}\left(25^{\circ} \mathrm{C}\right)=-3.940 \mathrm{E}-3 \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{C}} \times\left(75^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)+1.2296 \mathrm{~V}=1.032 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{D}}\left(\mathrm{~T}_{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{R}} \times\left(\mathrm{T}_{\mathrm{j}}-25\right)+\mathrm{R}_{\mathrm{D}}\left(25^{\circ} \mathrm{C}\right)=-1.1323 \mathrm{E}-6 \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{C}} \times\left(75^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)+0.0224 \Omega=0.02246 \Omega
\end{aligned}
$$

The dissipated power could be evaluate from Formula 1.6 using above $V_{t o} R_{d}$

2.9

$$
\mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{TO}} \times \mathrm{Id}_{\mathrm{AVG}}+\mathrm{R}_{\mathrm{D}} \times \mathrm{Id}^{2}{ }_{\mathrm{RMS}}=1.032 \mathrm{~V} \times 9.78 \mathrm{~A}+0.02246 \Omega \times(12.45 \mathrm{~A})^{2}=13.57 \mathrm{~W}
$$

For the T-type Vienna circuit, the switching losses are not negligible and should be added at the conduction losses for the evaluation of T_{j}. The reverse losses at 750 V are hundreds of $\mu \mathrm{A}$ and associated losses evaluated on the half cycle at 750 V are only $100 \mu \mathrm{~A}$ (worst case), and with a duty cycle of 50% give 37.5 mW of losses. The value should be updated with temperature, but at $75^{\circ} \mathrm{C}$ the contribution is negligible. After the evaluation of T_{j} is done with all the losses, it's possible to update formula 2.8 and start the iterative process. In circuits like power factor correction (PFC) or motor drives where the envelope of modulation is sinusoidal, 10 ms or similar, it's important at the end of the process to do a verification of the peak temperature of the diode during the cycle. The average temperature is correct, but the peak of T_{j} could be higher, so a quick check on T_{j} peak, which should be lower than $175^{\circ} \mathrm{C}$, is recommended.

The DNA of tech':

How to Calculate Power Losses in Gen 5 Diodes

Figure A

$$
\mathrm{I}_{\mathrm{AV}}=\frac{\mathrm{I}_{\mathrm{P}} \mathrm{t}_{\mathrm{on}}}{2 \mathrm{t}_{\mathrm{sw}}}
$$

$$
I_{\mathrm{RMS}}{ }^{2}=\frac{\mathrm{I}_{\mathrm{p}}^{2} \mathrm{t}_{\mathrm{on}}}{3 \mathrm{t}_{\mathrm{SW}}}
$$

$$
\begin{aligned}
I_{A V} & =\frac{I_{P}}{t_{S W}}\left(\frac{A}{2}+\frac{B}{2}\right) \\
I_{R M S}{ }^{2} & =\frac{I_{P}^{2}(A+B)}{3 t_{S W}}
\end{aligned}
$$

$$
\begin{aligned}
I_{A V} & =\frac{I_{P}}{2 t_{S W}} \times\left(2 t_{\text {on }}-t_{1}-t_{2}\right) \\
I_{R M S}^{2} & =\frac{I_{P}^{2}}{3 t_{S W}} \times\left(3 t_{\text {on }}-2 t_{1}-2 t_{2}\right)
\end{aligned}
$$

$\mathrm{I}_{\mathrm{AV}}=\frac{\left(\mathrm{I}_{\text {max. }}+\mathrm{I}_{\text {min }}\right) \mathrm{t}_{\mathrm{on}}}{2 \mathrm{t}_{\mathrm{SW}}}$

$$
I_{\mathrm{RMS}}{ }^{2}=\frac{\left(I_{\text {max }}^{2}+I_{\text {min. }}^{2}+I_{\max .} I_{\min }\right) t_{\mathrm{on}}}{3 \mathrm{t}_{\mathrm{SW}}}
$$

$I_{A V}=\frac{I_{\mathrm{p}} \mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\mathrm{SW}}}$

$$
\mathrm{I}_{\mathrm{RMS}}^{2}=\frac{\mathrm{I}_{\mathrm{P}}^{2} \mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\mathrm{sW}}}
$$

$\mathrm{I}_{\mathrm{AV}}=\frac{2 \mathrm{I}_{\mathrm{P}}}{\pi}$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{AV}} & =\frac{2 \mathrm{I}_{\mathrm{p}} \mathrm{t}_{\mathrm{on}}}{\pi \mathrm{t}_{\mathrm{SW}}} \\
\mathrm{I}_{\mathrm{RMS}}{ }^{2} & =\frac{\mathrm{I}_{\mathrm{p}}^{2} \mathrm{t}_{\mathrm{on}}}{2 \mathrm{t}_{\mathrm{SW}}}
\end{aligned}
$$

The DNA of tech':

How to Calculate Power Losses in Gen 5 Diodes

Figure A

$$
\begin{aligned}
I_{A V} & =\frac{P_{0}}{V_{0}} \\
I_{\text {RMS }} & =\frac{P_{0}}{V_{0}} \sqrt{\frac{16 V_{0}}{3 \pi V_{I N} \sqrt{2}}}
\end{aligned}
$$

