

Surface-Mount PAR® Transient Voltage Suppressors

High Temperature Stability and High Reliability Conditions

DFN6546A

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS

V_{BR}	12 V to 24 V
V_{WM}	10.2 V to 20.5 V
P_{PPM} (10 x 1000 μ s)	2000 W
T_J max.	185 °C
Polarity	Unidirectional
Package	DFN6546A
Circuit configuration	Single

FEATURES

- Low-profile package - typical height of 0.88 mm
- Leadless DFN package with side-wettable flanks suitable for customer AOI (Automatic Optical Inspection)
- Ideal for automated placement
- Junction passivation optimized design passivated anisotropic rectifier technology
- $T_J = 185$ °C capability suitable for high reliability and automotive requirement
- Unidirectional
- Excellent clamping capability
- Peak pulse power: 2000 W (10/1000 μ s)
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
 - Automotive ordering code: base P/NHM3
- Compatible to SMPC (TO-277A) package case outline
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS
COMPLIANT
HALOGEN
FREE

TYPICAL APPLICATIONS

Use in sensitive electronics protection against voltage transients induced by inductive load switching and lightning on ICs, MOSFET, signal lines of sensor units for automotive.

MECHANICAL DATA

Case: DFN6546A

Molding compound meets UL 94 V-0 flammability rating
Base P/NHM3 - halogen-free, RoHS-compliant, and AEC-Q101 qualified

Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

HM3 suffix meets JESD 201 class 2 whisker test

Polarity: color band denotes cathode end, heatsink is anode

MAXIMUM RATINGS ($T_A = 25$ °C, unless otherwise noted)

PARAMETER	SYMBOL	VALUE	UNIT
Peak pulse power dissipation with a 10/1000 μ s waveform (fig. 1) ⁽¹⁾	P_{PPM}	2000	W
Peak pulse current with a 10/1000 μ s waveform (fig. 3) ⁽¹⁾	I_{PPM}	See table next page	A
Operating junction and storage temperature range	T_J, T_{STG}	-65 to +185	°C

Note

⁽¹⁾ Non-repetitive current pulse, per fig. 3 and derated above $T_A = 25$ °C per fig. 2

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$, unless otherwise noted)											
DEVICE TYPE	DEVICE MARKING CODE	BREAKDOWN VOLTAGE V_{BR} ⁽¹⁾ AT I_T (V)			TEST CURRENT I_T (mA)	STAND-OFF VOLTAGE V_{WM} (V)	MAXIMUM REVERSE LEAKAGE AT V_{WM} I_R (μA)	MAXIMUM REVERSE LEAKAGE AT V_{WM} $T_J = 150^\circ\text{C}$ I_R (μA)	MAXIMUM PEAK PULSE SURGE CURRENT I_{PPM} ⁽²⁾ (A)	MAXIMUM CLAMPING VOLTAGE AT I_{PPM} V_C (V)	TYPICAL TEMP. COEFFICIENT OF V_{BR} ⁽³⁾ αT (%/°C)
		MIN.	NOM.	MAX.							
T2KN12A	T2NA	11.4	12.0	12.6	1.0	10.2	5.0	50	120	16.7	0.070
T2KN13A	T2NB	12.4	13.0	13.7	1.0	11.1	5.0	50	110	18.2	0.072
T2KN15A	T2NC	14.3	15.0	15.8	1.0	12.8	2.0	20	94.3	21.2	0.076
T2KN16A	T2ND	15.2	16.0	16.8	1.0	13.6	2.0	20	88.9	22.5	0.078
T2KN18A	T2NE	17.1	18.0	18.9	1.0	15.3	1.0	10	78.4	25.5	0.080
T2KN20A	T2NF	19.0	20.0	21.0	1.0	17.1	1.0	10	72.2	27.7	0.082
T2KN22A	T2NG	20.9	22.0	23.1	1.0	18.8	1.0	10	65.4	30.6	0.084
T2KN24A	T2NH	22.8	24.0	25.2	1.0	20.5	1.0	10	60.2	33.2	0.085

Notes
⁽¹⁾ Pulse test: $t_p \leq 50$ ms

⁽²⁾ Surge current waveform per fig. 3 and derated per fig. 2

⁽³⁾ To calculate V_{BR} vs. junction temperature, use the following formula: V_{BR} at $T_J = V_{BR}$ at $25^\circ\text{C} \times (1 + \alpha T \times (T_J - 25))$
⁽⁴⁾ All terms and symbols are consistent with ANSI/IEEE C62.35

THERMAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Thermal resistance	$R_{\theta JA}$ ⁽¹⁾	76	95	°C/W
	$R_{\theta JM}$ ⁽²⁾	1.2	1.5	°C/W

Notes
⁽⁵⁾ Thermal resistance junction-to-ambient to follow JEDEC® 51-2A, device mounted on FR4 PCB, 2 oz., 4.8 mm x 4.72 mm

⁽⁶⁾ Thermal resistance junction-to-mount to follow JEDEC® 51-14 using transient dual interface test method (TDIM)

IMMUNITY TO STATIC ELECTRICAL DISCHARGE TO THE FOLLOWING STANDARDS				
$(T_A = 25^\circ\text{C}$ unless otherwise noted)				
STANDARD	TEST TYPE	TEST CONDITIONS	SYMBOL	VALUE
IEC 61000-4-2	Contact discharge	$C = 150 \text{ pF}$, $R = 330 \Omega$	ESD	30 kV
	Air discharge			30 kV

ORDERING INFORMATION TABLE

Device code	T	2K	N	xxx	A	H	M3
	(1)	(2)	(3)	(4)	(5)	(6)	(7)

- 1** - Vishay PAR® TVS product
- 2** - Peak pulse power rating (2K = 2000 W)
- 3** - Package type (N = DFN package)
- 4** - Nominal breakdown voltage
- 5** - Breakdown voltage tolerance and polarity (A \pm 5 %, unidirectional)
- 6** - Quality grade (H = AEC-Q101 qualified, otherwise = industry grade)
- 7** - Material / Environment category (M3 = halogen-free, RoHS-compliant, and termination lead (Pb)-free)

ORDERING INFORMATION (Example)				
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE
T2KN12AHM3/H ⁽¹⁾	0.094	H	1500	7" diameter plastic tape and reel
T2KN12AHM3/I ⁽¹⁾	0.094	I	6000	13" diameter plastic tape and reel

Note
⁽¹⁾ AEC-Q101 qualified

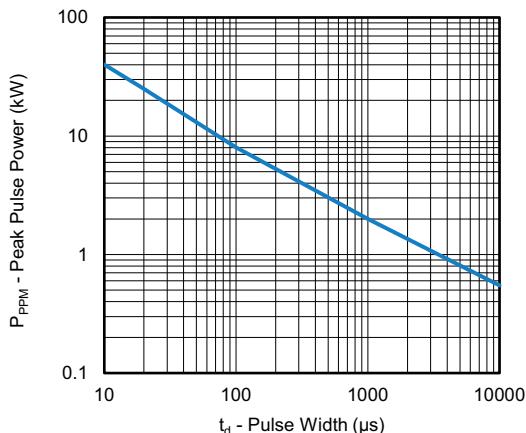

RATINGS AND CHARACTERISTICS CURVES ($T_A = 25^\circ\text{C}$, unless otherwise noted)

Fig. 1 - Peak Pulse Power Rating Curve

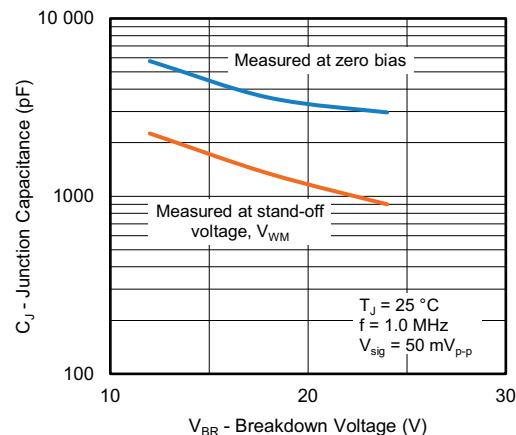


Fig. 4 - Typical Junction Capacitance

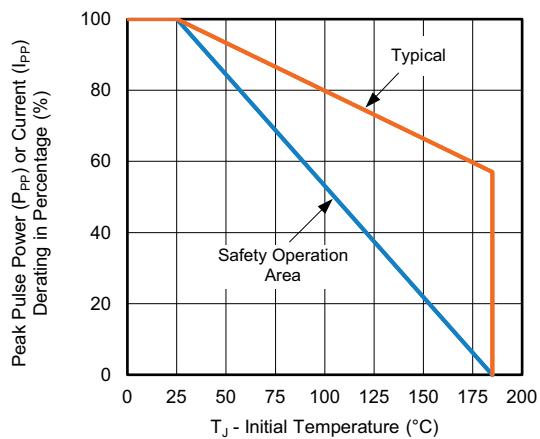


Fig. 2 - Pulse Power or Current vs. Initial Junction Temperature

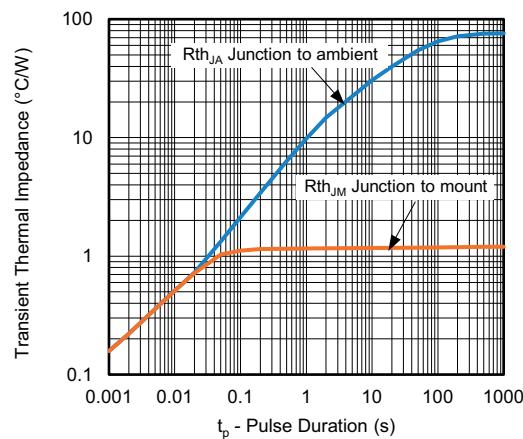


Fig. 5 - Typical Transient Thermal Impedance

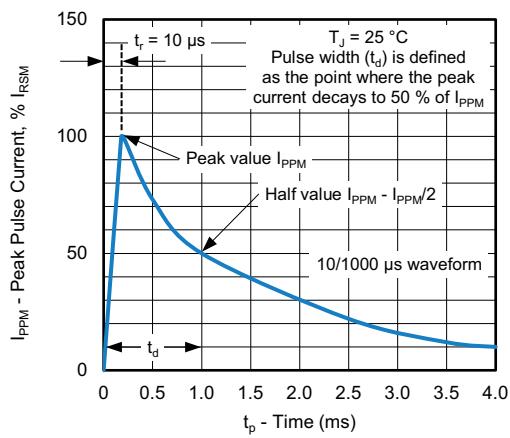
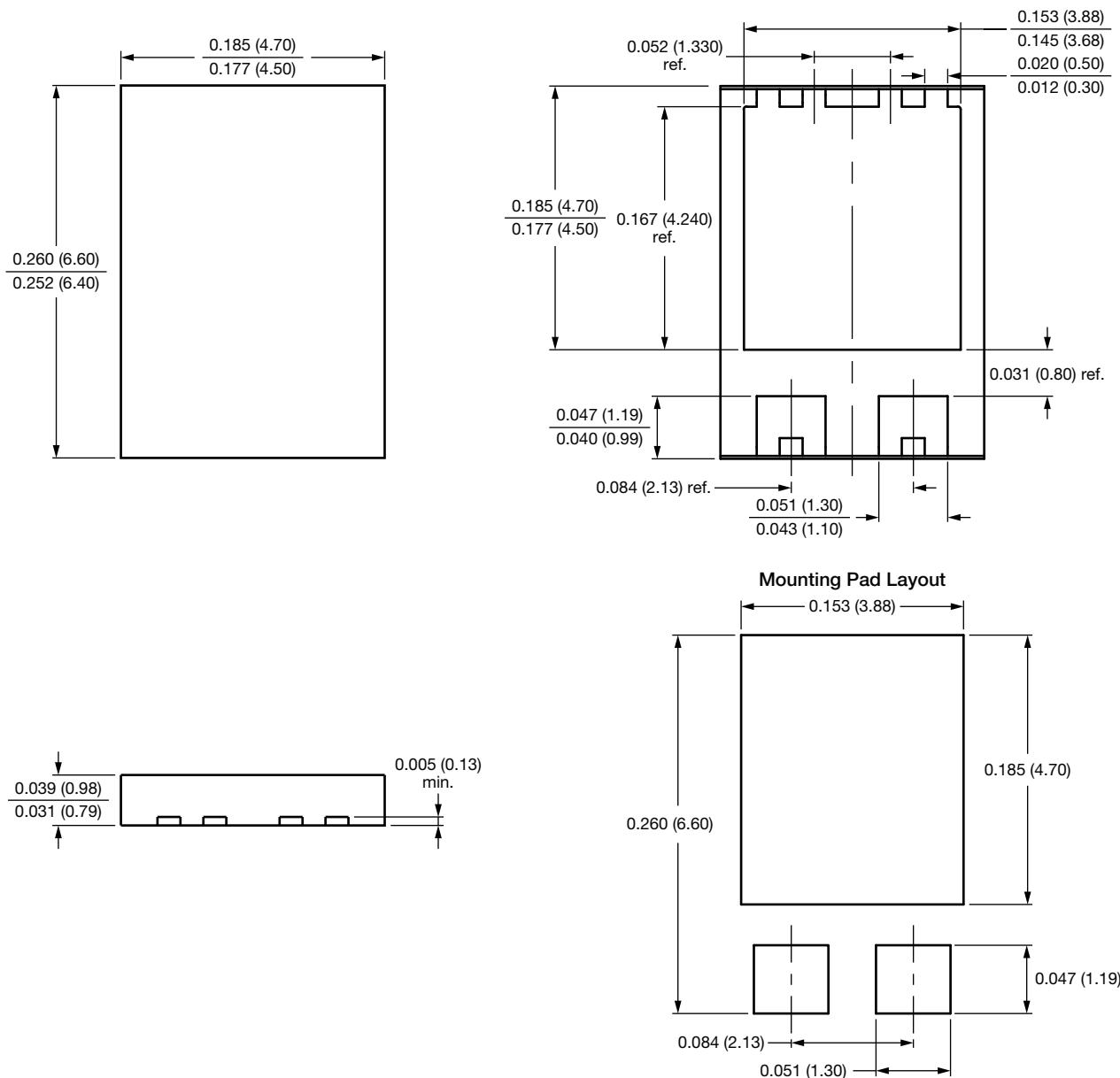



Fig. 3 - Pulse Waveform

Note

- Fig. 1, power calculations is based on I_{PPM} times defined maximum clamping voltage by pulse width

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

DFN6546A

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.